Performance Monitoring and Analysis for Operational Improvements

International Conference on Ship Efficiency
26-27 September 2011, Hamburg

Hideyuki Ando
MTI, NYK Group
Outline

1. Background

2. Performance monitoring and data collection

3. Performance monitoring tool

4. Performance analysis

5. Examples

6. Concluding remarks
1. Background
1-1. GHG emissions regulations

- SEEMP (Ship Energy Efficiency Management Plan)
 - MEPC 62 adopted revisions of MARPOL Annex VI introducing EEDI and SEEMP
- Entry into force date: 1 January 2013

Operational measures
- slow steaming
- weather routing
- hull and propeller maintenance

Plan | Do | Check | Act

Continuous monitoring & improvement

EEOI trend

Voy. 1 | Voy. 2 | Voy. 3 | Voy. 4 | Voy. 5 | Voy. 6 | Voy. 7 | Voy. 8

EEOI [g/ton-mile]
1-2. Shipping companies’ efforts for fuel saving

- According to increased cost of bunker, shipping companies have made efforts for fuel saving by operational and technical measures
 - Slow steaming
 - Weather routing
 - Performance monitoring
 - Applying energy saving devices

<table>
<thead>
<tr>
<th></th>
<th>Slow steaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship speed</td>
<td>24 knot</td>
</tr>
<tr>
<td>M/E fuel consumption</td>
<td>225 ton/day</td>
</tr>
<tr>
<td>M/E fuel cost (@ 600 USD/MT)</td>
<td>134,800 USD/day</td>
</tr>
<tr>
<td>CO2 emission</td>
<td>696 ton/day</td>
</tr>
</tbody>
</table>

Cost benefit and emission reduction by slow steaming

e.g. 8,000 TEU container

- Slow steaming

<table>
<thead>
<tr>
<th></th>
<th>Slow steaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship speed</td>
<td>20 knot</td>
</tr>
<tr>
<td>M/E fuel consumption</td>
<td>130 ton/day</td>
</tr>
<tr>
<td>M/E fuel cost (@ 600 USD/MT)</td>
<td>78,000 USD/day</td>
</tr>
<tr>
<td>CO2 emission</td>
<td>403 ton/day</td>
</tr>
</tbody>
</table>

- 16 %

- 42 %
1-3. Example of actual fuel consumption - same service and same size of vessel

Comparison of total fuel consumption per voyage
Same ship size and same voyage

- Total fuel consumption per voyage largely differs -> Why?

![Bar chart showing comparison of fuel consumption per voyage.](image)
1-4. Base performance + additional factors

- Break down analysis is necessary to identify cause of fuel consumption

- Effect of distance increase
- Effect of speed allocation
- Effect of speed increase
- Effect of weather
- Generator use
- Effect of ship hull condition
- Effect of draft and trim
- Ship base performance
2. Performance monitoring and data collection
2-1. How can we improve operation?

- "Monitoring" is the key function - Basis of evaluation and action planning
2-2. Performance monitoring for right awareness

- If awareness is wrong, decision making and action will be wrong

- What is necessary for right awareness
 - **Provide correct and necessary information in right time**
2-3 Monitor ship performance
- Every 1 hour data is necessary for right awareness

• Existing data collection approaches
 – Manual reporting (every 24 hrs)
 – Automatic data collection (sampling can be every 1 sec)

• Every 1 hour data give detail information about performance
 – Speed increasing profile and effect of current can be seen in the 1 hour interval graph.

• Manual logging is inherently difficult for OG and wind.
 – Values of OG speed and wind are changing rapidly. Better to rely on computer power.
2-4. Automatic data collection onboard

• Requirements
 • Interface to existing onboard equipment, such as engine D/L, ECDIS, VDR, flow meter and etc.
 • Automatic data processing and transferring to shore
 • Least additional load on crews
 • High reliability ... 24 hrs, 365 days work
 • Lower cost of implementation
 • Flexibility of customization
3. Performance monitoring tool
3-2. Onboard performance monitoring

- **FUELNAVI**
 - Real time performance indicator in bridge
 - Performance index
 - OG speed / fuel consumption [NM/MT]
 - Fuel consumption [MT/day]
 - Trip meter function for onboard performance trial
 - Energy efficiency evaluation
3-3. Performance monitoring at shore

- Comparison plan with actual
 - Speed
 - RPM
 - Buffer time (speed margin)
 - M/E load
 - Fuel consumption
3-4. Performance monitoring by weather routing provider

- Monitoring data is also sent to weather routing provider

- Comparison between voyage plan and actual
 - Ship performance (rpm, speed, fuel consumption)
 - Weather condition (wind and ship motion)

- Corrective action
 - Update voyage recommendation

(part of voyage plan sheet)
3-5. Performance analysis report

- Help action planning for operation improvement and information sharing between operators and vessels

- Consists of 10 pages
 - Summary of voyage data
 - Analysis of FOC increase causes
 - Comparison with the other vessel record
 - Evaluation of weather routeing
 - Advice for fuel saving
4. Performance analysis
4-1. Voyage overview

- Overview how vessel operated from departure port to arrival port

Encounter rough sea

- Higher M/E load

- Optimum M/E load

- Slip as weather index

- Drifting

- M/E RPM

- Speed (log, SOG)

- M/E load [%], Slip [%]
4-3. Quantify and evaluate FOC increase factors

- Compare each FOC increase factors with past record

![Graph showing FOC increase factors for Distance, Speed, Weather, and Speed allocation.]

- Speed allocation
 - Voy. 45: 32.9
 - Average: 35.7
- Weather
 - Voy. 45: 148.4
 - Average: 77.5
- Distance
 - Voy. 45: 10.5
 - Average: 47.1
- Speed
 - Voy. 45: 27.8
 - Average: 15.4

"Performance Monitoring and Analysis for Operational Improvements", Hideyuki Ando, MTI, NYK Group
International Conference on Ship Efficiency 2011, 26-27 Sep 2011 in Hamburg by STG
4-4. Identify base performance from collected data

Oakland to Tokyo 10 days leg

Data interval: 1 hour (about 240 data)

- All data
- Less than Beaufort 2
- Less than 2° pitch
4-5. Identify FOC increase by weather

Voyage: 41
Leg: Trans-Pacific

Speed - fuel consumption curve

FOC increase by weather

Base - calm sea performance

Pro forma speed

- Green dots: All data (226 hours)
- Blue line: Calm (Beaufort 2 or less)
- Green line: Best condition
- Red line: Worst condition
- Purple line: Average condition
4-7. Review of weather routing

- Longer voyage distance causes large FOC increase
 - Requires speed up to keep schedule
- Review of weather routing and discussion with its provider
4-8. Coaching comments for corrective action planning

- Coaching comments for fuel saving are attached
- It helps understanding data and supports corrective actions of parties who concern

Example

- **Total FOC was 950 tons, which is the second largest value among past records.**
- **The main cause of FOC increase is 500 miles longer distance than plan, which caused 80 tons FOC increase.**
- **But FOC was saved 100 tons by reducing speed, schedule changed in advance.**
5. Examples
5-1. Share good practice

- Share good practice between operators and vessels
 - Keep averaged engine load until end of voyage
5-2. Example of operation improvement (1)

- There is 12 knot speed restriction area within 40 miles from a port
- Slow down too early timing was observed
- Approach to port was advised to captain and improved in the following voyage
5-3. Example of operation improvement (2)

- After T/C cut, the M/E can be continuously operated under 50%.
- However, there was a case that a C/E was still combining 10% low load and higher M/E load to operate shaft generator instead of diesel generator.
- This operation was less energy efficient in terms of total optimization and operation rule was changed after discussion.
6. Concluding remarks
Another reason for automatic data collection
- Feedback to Weather Routing Provider

- Voyage plan
 + course, speed, rpm, FOC, weather
 + ship performance model

- Voyage actual
 + actual speed – rpm
 + actual weather

Ship model and weather forecast are inherently include errors.
But feedback loop by monitoring can make this system work.
Concluding remarks

- For further improvement of ship energy efficiency in operation, detail information by using automatic data collection and analysis are necessary.

- There are several feedback loops for operation performance improvement. Providing right awareness to them is necessary.

- Especially the combination between weather routing and performance monitoring is important and it is our next things to do.

- It is organizational improvement process for energy efficient fleet operation. This direction will be in line with coming SEEMP.
Roadmap of performance monitoring

Weather Routing & SIMS Monitoring
2010 -

Onboard Weather Routing Trial
2005 - 2006

Fleet Monitoring
Ship Monitoring
SIMS 2008 -

Fuel Consumption Monitor FUELNAVI
2007 - 2008

Electronic Ablog SPAS
2006 -

Performance Monitoring
2010 -

NYK e-Missions’ 2009 -

Optimum Weather Routing Safety + Economy + Schedule 2009 -

Real time Weather Routing & Monitoring
• Real time communication
• Precise ship performance model
• Onboard sea-keeping simulation 2012 -

Technical Performance Analysis
• Ship appendages
• Paint
• M/E governor
• New design propeller 2008 -

Performance Validation of Low Emission Machineries
• Hybrid Turbo Charger
• Battery (Giga Cell)
• W.H.R 2011 -

Accurate Performance Monitoring and feedback to Ship Design
• Accurate wave and wind measurement
• Accurate torque and thrust measurement
• Accurate log speed measurement
• Accurate fuel consumption measurement
• Ship performance model 2012 -

Smart Ship 2014 -
• Minimize emissions
• Integration of navigation equipment and weather routing
• Automatic performance model identification

SEEMP package
• Voyage planning
• Monitoring
• Evaluation and action 2012 -

Best balance S.E.E.
Optimum Fleet Management
• C/B maximize with weather routing and monitoring
• Minimum emissions with SEEMP
• Safety management at rough sea 2014 -

CO2 minimize

To Achieve Best Balance of Safety, Economy and Environment

September 2011 rev.5
Thank you very much for your attention