Green Bulkers Now and in the Future

Emission reduction, fuel efficiency, energy efficiency

Leif Jacobsen
Director, Grontmij Marine
Grontmij Group - Introduction

- Company founded in 1915
- Multi disciplinary Consulting & engineering company
- 350 Offices World Wide
- 11,000 professionals
- Head Office located in The Netherlands
- Turnover USD 1,5 Billion
- Flexible, dynamic organization
- Public listed on the Euronext, Amsterdam
Grontmij Marine Group - Introduction

- Ship Design since 1966
- Ship Design, Marine Engineering, Survey & Inspection
- 30 Professional Naval Architects & Marine Engineers
- Head Office located in Copenhagen, Denmark
- Offices in Copenhagen, Odense & Shanghai
Grontmij Marine Group – The History

- Ship design established in 1966 as Dwinger Marineconsult
- Dwinger Marine became part of Carl Bro in 1990
- From 2000 trading as Carl Bro Marine
- Since 2007 part of the Grontmij Group as Grontmij | Carl Bro A/S
- From 29th April 2011 company name changed to Grontmij
Grontmij Marine

Design of all ship types:

- Tankers
- Bulk Carriers
- Container Ships
- Gas Carriers (LPG / LNG / LEG)
- Ro-Ro vessels
- Passenger Ships
- Offshore Vessels
- Special purpose vessels
- Navy Ships
Grontmij Marine – Capabilities & Experience

- Competent staff with strong experience base
- Newest tools and calculation software available
- Cutting edge design, based on latest market trends.
- Nearly 300 vessels built according to our design
- Very strong setup in Asia - 150 vessels built in China
- Currently 18 shipyards is building according to our design
Grontmij Ship Design & Marine Engineering
What is a Green Bulker?

- Bulker with low emissions to the environment
- Bulker which reuses energy
- Bulker with an effective propulsion system
- Bulker with a ballast water treatment system
- Bulker where Opex and Capex are optimized
- Bulker where lines and capacity are optimized related to fuel consumption
- Bulker where the light weight is optimized
- Bulker with energy saving devices
Seahorse 35 - the vessel for case studies
Seahorse 35 – Contract Status

- 26 Effective contracts at 7 different shipyards
- Totally about 60 vessels ordered
- 1 Vessel delivered (August 2011)

- DaoDa Heavy Industries (DDHI), Qidong, Jiangsu
- Chengxi SY, Jiangyin, Jiangsu
- Zhong Chuan Heavy Industry (ZCHI), Zhoushan, Zhejiang
- Jiangdong Shipyard, Wuhu, Anhui
- Nantong Jinghua, Nantong, Jiangsu
- Yangfan Shipyard, Zhoushan, Zhejiang
- Guoyu Shipyard, Yangzhou, Jiangsu

- 2 more yards have signed SEAHORSE 35 contracts but not yet effective
Main particulars – SEA HORSE 35

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, OA</td>
<td>180.0 m</td>
</tr>
<tr>
<td>Breadth</td>
<td>30.0 m</td>
</tr>
<tr>
<td>Depth</td>
<td>14.7 m</td>
</tr>
<tr>
<td>Scantling draft</td>
<td>10.1 m</td>
</tr>
<tr>
<td>DWT scantling</td>
<td>35,000 ton</td>
</tr>
<tr>
<td>TPC</td>
<td>50.0 t/cm</td>
</tr>
<tr>
<td>Cargo hold capacity, grain</td>
<td>46,700 m³</td>
</tr>
<tr>
<td></td>
<td>(1,650,000 cft)</td>
</tr>
<tr>
<td>Cargo hold capacity, bale</td>
<td>45,800 m³</td>
</tr>
<tr>
<td></td>
<td>(1,617,000 cft)</td>
</tr>
<tr>
<td>Gross tonnage</td>
<td>24,366</td>
</tr>
<tr>
<td>Net tonnage</td>
<td>11,521</td>
</tr>
</tbody>
</table>
General Arrangement Plan 3/3

MIDSHIP SECTION

CARGO HOLD NO. 5

CARGO HOLD NO. 1

TRANSVERSE BULKHEAD
GREEN SHIP of the FUTURE (GSF):

- Danish Maritime Network works to reduce emission from ships
 - 30% reduction of CO₂
 - 90% reduction of SOₓ
 - 90% reduction of NOₓ

- GSF presented two demonstrator vessels at the BRIGHT GREEN Exhibition in connection with the COP15 Climate Conference held in Copenhagen December 2009
Regulations on emissions, Sulphur

Figure 2. MARPOL Annex VI Fuel Sulfur Limits
Regulations on emissions, NOX

Figure 1. MARPOL Annex VI NOx Emission Limits
Future regulations on CO2, EEDI-Index

\[EEDI_{\text{Attained}} = \frac{C_F \cdot SFC \cdot P}{f_i \cdot \text{Capacity} \cdot V_{\text{ref}} \cdot f_w} \]
IMO energy efficiency design index Base line (35,000 DWT) : 6.54 g/t-nm

SH35 EEDI (HFO) : 5.85 g/t-nm (minus 11%)
SH35 EEDI (MDO) : 5.51 g/t-nm (minus 16%)
The casestudy

How low can we go on emissions for a Seahorse 35 Bulker with existing known green Technology?

Founded by the Danish Maritime Foundation
List of primary modifications

- Optimized propeller
- Twisted spade rudder with Costa bulb
- Water in fuel (WIF)
- Exhaust gas recirculation (EGR)
- Waste Heat Recovery system (WHR)
- Exhaust Gas Scrubber
- Ducted/direct air intake for main engine
- Optimised coolers and cooling pumps
- Auxiliary engine operation on marine diesel oil (MDO)
- High capacity fresh water generator
- Installation of Ballast Water Treatment System (BWT)
Emission reduction

<table>
<thead>
<tr>
<th></th>
<th>normal at sea</th>
<th>annual basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>total ship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FO consumption</td>
<td>-7,7%</td>
<td>-7,2%</td>
</tr>
<tr>
<td>CO2 emission</td>
<td>-7,7%</td>
<td>-7,2%</td>
</tr>
<tr>
<td>SOx emission</td>
<td>-98,7%</td>
<td>-98,6%</td>
</tr>
<tr>
<td>NOx emission</td>
<td>-81,6%</td>
<td>-79,1%</td>
</tr>
<tr>
<td>PM emission</td>
<td>-90,9%</td>
<td>-86,0%</td>
</tr>
</tbody>
</table>
Additional weight (estimate)

160 t

Additional cost (estimate)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed nozzle/optimized propeller</td>
<td>700,000</td>
</tr>
<tr>
<td>Twisted spade rudder with Costa bulb</td>
<td>160,000</td>
</tr>
<tr>
<td>Water in fuel (WIF)</td>
<td>200,000</td>
</tr>
<tr>
<td>Exhaust gas recirculation (EGR)</td>
<td>600,000</td>
</tr>
<tr>
<td>Waste Heat Recovery system (WHR)</td>
<td>1,250,000</td>
</tr>
<tr>
<td>Exhaust Gas Scrubber</td>
<td>1,200,000</td>
</tr>
<tr>
<td>Ducted/direct air intake for main engine</td>
<td>20,000</td>
</tr>
<tr>
<td>Optimised coolers and cooling pumps</td>
<td>150,000</td>
</tr>
<tr>
<td>Auxiliary engine operation on marine diesel oil (MDO)</td>
<td>-</td>
</tr>
<tr>
<td>High capacity fresh water generator</td>
<td>50,000</td>
</tr>
<tr>
<td>Installation of Ballast Water Treatment System (BWT)</td>
<td>810,000</td>
</tr>
<tr>
<td>Total</td>
<td>5,140,000</td>
</tr>
</tbody>
</table>

Estimated price for a Seahorse 35 is 22-25 mill. USD

(Chinese yard)
Where do we put it?
SW Scrubber installed in SH35

- Casing is extended
- Scrubber installed in casing
Main system components

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight, (t)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dry</td>
<td>wet</td>
</tr>
<tr>
<td>Scrubber, stainless steel</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>System Pumps</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>Water treatment plant</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Piping</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Control and monitoring</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total weight, loss of DW</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>
Investments

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost (mio USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrubber</td>
<td>1.10</td>
</tr>
<tr>
<td>Water treatment system</td>
<td>0.10</td>
</tr>
<tr>
<td>Transport</td>
<td>0.02</td>
</tr>
<tr>
<td>Installation</td>
<td>0.05</td>
</tr>
<tr>
<td>Commissioning</td>
<td>0.02</td>
</tr>
<tr>
<td>Total cost</td>
<td>1.29</td>
</tr>
</tbody>
</table>

Est. cost is based on new build of ship at Chinese Yard
Cost scenario for MGO operation

- HFO price: 650 USD/ton
- MGO price: 900 USD/ton
- Annual consumption of fuel (main engine): 5600 t
- Annual consumption of fuel (DG’s): 800 t
- Annual fuel cost HFO: 4.2 mio USD
- Annual fuel cost converting to MGO: 5.8 mio USD
- Annual additional cost for MGO op.: 1.6 mio USD
Pay back for SW scrubber solution

- Total investments: 1.29 mio USD
- Additional fuel to operate scrubber: 110 t/year
- Annual fuel cost, scrubber operation: 0.1 mio USD
- Annual additional fuel cost, DG’s on MGO: 0.2 mio USD
- Total annual fuel cost: 3.9 mio USD
- Annual fuel cost if MGO operation: 5.0 mio USD
- Annual fuel cost saving for continuous operation on HFO / Scrubber: 1.1 mio USD
- Simple pay back: investment / Saving: 1.2 years
Green Bulkers

- What do we do as Design House for being ”Green”?

 - Optimized designs
 - Weight saving studies
 - Propulsion Systems
 - Use of High Tensile Steel

 - Following developments within Green Technology

 - Tank test with new features
Optimized Hullform

- Hull form generated through extensive CFD analysis and Model test
- Vertical Stem design
- Low resistance and optimized wake field – optimum propeller design
- Ice Classed vessel and Ice Model testing
Propeller

- NPT Propeller – New Profile Type

State of the art propeller design

- Low blade section area
- Low propeller weight
- Highly cavitation resistant
- Highest achievable performance
Fuel Oil Optimization

- MEWIS Duct
 ~4% - 6% Efficiency Increase

- Propeller Boss Cap Fin (PBCF)
 ~1% Efficiency Increase
Tanktest vs Sea Trial

SEAHORSE 35 - FORCE Tanktest vs DDHI DD017 Sea Trial

Engine Power [kW]

Speed [knots]
Tanktest vs Sea Trial - 3

- Conclusion: The measured result is “SPOT ON” the expected values measured in the model test basin.

- The test result confirms that we have obtained very accurate correlation between model test and full scale.

Popular Quote:
The vessel performed much better than expected – The design is very good.

Grontmij Opinion:
The achieved result is what we expected and what we have promised to Yard and Owner.

Nothing more, nothing less.

This is good design!
Fuel Oil Optimization

MAIN ENGINE - Specific Fuel Oil Consumption (SFOC)

- MAN 5S50MC-C7.1 TI
- MAN 5S50ME-B9.2 TII

M/E Power [kW]

SFOC [g/kWh]
Fuel Oil Optimization

SEAHORSE 35
Daily Fuel Oil Consumption (MDO, 42.700 kJ/kg) at Scantling Draft (T = 10,1m) incl. 15% Sea Margin

- M/E: MAN BW 5S50MC-C7.1 TI
 SMCR 7.500 kW @ 121 RPM
 5,54 m NPT Propeller
 24,3 t/day

- M/E: MAN BW 5S50ME-B9.2 TII
 SMCR 6.350 kW @ 110 RPM
 5,8 m Wärtsilä Propeller
 22,7 t/day

- M/E: MAN BW 5S50ME-B9.2 TII
 SMCR 6.350 kW @ 99 RPM
 5,9 m NPT Propeller
 21,9 t/day

- M/E: MAN BW 5S50ME-B9.2 TII
 SMCR 6.350 kW @ 99 RPM
 5,9 m NPT Propeller
 MEWIS Duct + PBCF (-5%)
 20,8 t/day
Future developments

- Sails
- Solar Cells
- Fuel Cells
- Using weather forecast to optimize route planning
- Low friction systems
- New painting systems
- Trim optimization
THE END

Thanks for your attention

Visit:

www.marineshipdesign.com